
Introduction to Cryptography

Mario Cagalj

University of Split

Symmetric Cryptography

Symmetric vs Asymmetric Cryptography System

Encryption
plaintext

Decryption
ciphertext plaintext

Key generator

Ke Kd

public channel

private channel

Symmetric cryptography implies Ke = Kd
Asymmetric cryptography implies Ke ̸= Kd

1

Cryptographic System

P - the set of plaintext messages (messages in clear)
C - the set of ciphertext messages (encrypted messages)
Ke and Kd - the set of encryption and decryption keys
KeyGen : N → Ke ×Kd - key generation algorithm
E : Ke × P → C - encryption algorithm
D : Kd × C → P - decryption algorithm

For each plaintext p ∈ P and all keys ke ∈ Ke there is the
corresponding key kd ∈ Kd such that Dkd(Eke(p)) = p.

2

Kerckhoffs’ Principle

Definition
The security of a cryptographic system should rely solely on
the secrecy of the key, rather than on the secrecy of the
algorithm or system design.

Put forward by Auguste Kerckhoffs in 19th century:
Cryptographic systems should be secure even if all details,
except the key, are publicly known.
Emphasizes transparency and open algorithms for
independent analysis. Security comes from strong keys
and proven algorithms, not secrecy of implementation.
Security through obscurity not a good practice.

3

Classical Encryption Systems

Caesar (Shift) Cipher

A B C
D

E
F

G
H

I
J
K

LMNOP
Q

R
S

T
U

V
W

X
Y Z

a

b
c
d
e

f
g

h
ijklm

n

o
p
q

r
s
t

u
v w x y z

+3

Example
Example plaintext = cryptography and network security
ciphertext = FUBSWRJUDSKB DQG QHWZRUN VHFXULWB

4

Caesar Cipher

Let us encode English alphabet as follows:
a = 0,b = 1, . . . , z = 25.
Let p, c, and k denote plaintext, ciphertext and the secret
key, respectively; note, p, c, k ∈ Z26 = {0, 1, . . . , 25}
Encryption: c = p+ k mod 26
Decryption: p = c+ (−k) mod 26 = c+ (26− k) mod 26
Monoalphabetic supstitution cipher

Q. Perform cryptanalysis of Caesar cipher.

5

Caesar Cipher

There are only 26 possible keys in Caesar cipher
It is easy to exhaust/test all keys (a brute-force attack)
However, we can easily increase the number of keys by
allowing an arbitrary permutation of the input alphabet

a b c d e f g h i j k l m n o p q r s t u v w x y z

K Q V F C M A U L B S E W O Z H Y G I D P X J N T R

The number of keys increased to 26! > 280

Brute-force attack thwarted
Note: not a shift cipher anymore

Q. Perform cryptanalysis of ”imporved” Caesar cipher.

6

Cryptanalysis of Caesar Cipher

Letter frequency in
English text:

Letter Frequency
e 15.58%
t 10.32%
a 7.79%
...

...
q 0.21%
j 0.21%
x 0.63%

7

Vernam Cipher

Plaintext space: P = {0, 1}n, plaintext P ∈ P
Key space: K = {0, 1}n, key K ∈ K
Ciphertext space: C = {0, 1}n, ciphertext C ∈ C
Encryption algorithm: C = P⊕ K
Decryption algorithm: P = C⊕ K

Note, P, K, C are all random variables. Also, the decryption
function is an inverse function of the encryption function:

P = C⊕ K = P⊕ K⊕ K = P

8

Vernam Cipher - example

Plaintext P: Test

Plaintext P (hex): 54657374
Key K (hex): 00010203

Ciphertext C (hex): 54647177

Plaintext P (bin): 01010100 01100101 01110011 01110100
Key K (bin): 00000000 00000001 00000010 00000011

Ciphertext C (bin): 01010100 01100100 01110001 01110111

9

Vernam Cipher - Key Reuse

By reusing the same encryption key over and over renders the
Vernam cipher completely insecure. Indeed:

C1 =P1 ⊕ K
C2 =P2 ⊕ K

Then, by xoring two public ciphertexts C1 and C2 we have:

C1 ⊕ C2 = P1 ⊕ K⊕ P2 ⊕ K = P1 ⊕ P2

Observe:

C1 ⊕ C2 = 0 implies P1 = P2
P2 = C1 ⊕ C2 ⊕ P1, where P1 might be easily guessable
Finally, H(P2) = H(P1) (equal entropies)

10

Vernam Cipher - Key Reuse

Key K: abf1021df4

Plaintext P1: Hello
Plaintext P1 (hex): 48656c6c6f

Ciphertext C1 (hex): e3946e719b

Plaintext P2: world
Plaintext P2 (hex): 776f726c64

Ciphertext C2 (hex): dc9e707190

P1 xor P2: 3f0a1e000b
C1 xor C2: 3f0a1e000b

P1 xor C1 xor C2 (hex): 776f726c64
P1 xor C1 xor C2 (utf): world

11

Perfect Secrecy

We show how to convert Vernam cipher into an ideal cipher.
Definition (Perfect secrecy)
A cipher is said to have a perfect secrecy property if:

Pr(P = p|C = c) = Pr(P = p), ∀p ∈ P , c ∈ C.

Here, Pr(P|C) denotes conditional posterior probability, and
Pr(P) prior probability of a plaintext.

Intuitively, a given cipher perfectly protects message
confidentiality if resulting ciphertexts, once captured by the
attacker, do not help him/her to gain additional insights into
encrypted plaintexts; no matter how powerful the attacker is.

12

Perfect Secrecy

Let us restate the previous definition using the language of
information entropy1.

Definition (Perfect secrecy)
A cipher is said to have a perfect secrecy property if:

H(P|C) = H(P), P ∈ P , C ∈ C.

Here, H(P|C) is conditional entropy. Intuitively, a given cipher
perfectly protects message confidentiality if resulting
ciphertexts, once captured by the attacker, do not decrease
attacker’s apriori uncertainty about encrypted plaintexts.

1Please check accompanying slides ”Write-up on information entropy”.
13

One-Time Pad

Definition (One-time pad)
One-time-pad is identical to Vernam cipher with an
important difference that the key K is selected uniformly at
random for each new plaintext to be encrypted.

Theorem
One-time pad has a perfect secrecy property.

Note that it still can happen that two plaintexts are by chance
encrypted using the same key, but this is of no help to the
attacker as he/she does not know which ones.

14

One-Time Pad - example

Let P, K, C ∈ {0, 1} and consider two plaintext messages: P1 = 1
and P2 = 1. Using one-time-pad, we encrypt them as follows:

Generate randomly K1, then calculate C1 = P1 ⊕ K1
Generate randomly K2, then calculate C2 = P2 ⊕ K2

After xor-ing two public ciphertexts C1 and C2 and rearranging:

P2 = C1 ⊕ C2 ⊕ P1 ⊕ K1 ⊕ K2

Now, even if the attacker knows P1, he still cannot calculate P2
since he cannot predict K1 ⊕ K2 better than randomly guessing.
Hence, C1 and C2 are useless to the attacker, i.e., H(P|C) = H(P).

15

One-Time Pad - Bad News

Key space size
While being perfect/ideal, this cipher is not practical as it
implies that the number of keys is greater or equal to the
number of plaintext messages, i.e., |K| ≥ |P|.

16

Ideal Cipher - Bad News

Necessary condition for a cipher to be ideal: |K| ≥ |P|

Assume plaintexts P are selected randomly from P , where |P| = 8

A priori, the attacker’s uncertainty is Pr(P = p) = 1
8 , ∀p ∈ P

A posteriori, Pr(P = p|C = c) = 0, ∀p ∈ P ′

Moreover, Pr(P = p|C = c) = 1
4 , ∀p ∈ P \ P

′

Hence, Pr(P = p|C = c) ̸= Pr(P = p), violating perfect secrecy condition.

17

How to deal with the bad news?

We know that ideal cipher implies |K| ≥ |P|.

Yet, modern practical secure ciphers satisfy |K| ≪ |P|2.

Relax assumption about an adversary
Perfect security definition sets unrealistic assumption of an
almighty adversary who has unlimited processing power.

In practice, though, adversaries are limited in the number of
operations (and amount of memory) they can perform
(afford) in a given period of time, leading to the notion of
computational security.

2E.g., AES can securely encrypt 1GB using only one 128 bit key.

18

Computational Security

1 Consider only realistic computationally-bounded
adversaries who can perform a limited (albeit still large)
number of computations (e.g. q = 260) in a fixed period of
time.

2 Embrace the risk that a computationally-bounded
adversary can succeed in breaking your system, but only
with an acceptably small (negligible) probability ε.

For example, consider a cipher that uses a randomly selected 128-bit key to
encrypt multiple plaintext messages. In this scenario, an attacker capable of
performing q = 260 operations (testable guesses) can succeed in guessing
the correct key with a probability of at most ε = q

2128 = 2−68.

19

Brute-Force Attack

Algorithm 1: Generic brute-force attack
Data: (plaintext, ciphertext) pairs (pi, ci)
Result: Found key

currentKey← Initial Key;
while true do

found← true;
forall pairs (pi, ci) do

if DecryptWithKey(ci, currentKey) ̸= pi then
found← false;
break;

if found then
print(”Found key:”, currentKey);
break;

currentKey← GenerateNextKey(currentKey);

20

Brute-Force Attack

Reflect:

Brute-force attack always possible against practical
ciphers that assume computationally-bounded
adversaries.
However, this attack is irrelevant for perfectly secure/ideal
ciphers. Why?

21

Modern Encryption Systems

Stream Cipher vs Block Cipher

Stream cipher processes messages bit/byte by bit/byte

plaintext

stream cipher seed/key

ciphertext

Block cipher processes messages in blocks

plaintext

block cipher

key

ciphertext

22

Modern Block and Stream Ciphers

Block ciphers (not an exhaustive list):

AES (Advanced Encryption Standard)

Stream ciphers (not an exhaustive list):

AES-CTR, AES-GCM (AES in counter mode of operation)
ChaCha20 (based on Salsa20)

23

Advanced Encryption Standard (AES)

In 1997. the US National Institute of Standards and
Technology (NIST) announced a competition for a new
encryption standard to replace the existing standard DES.
The new algorithm would be named AES.
In 1998. NIST selected a group of 15 algorithms as
candidates for AES.
In 2001. NIST announced that Rijndael (pronounced
[reinda:l]) was chosen for AES. Rijndael was designed by
two Belgian cryptographers, Daemen and Rijmen.

24

Advanced Encryption Standard (AES)

AES is a symmetric-key block cipher that operates with
128-bit plaintext and ciphertext blocks.
It supports encryption keys of 128, 192, and 256 bits3.

More formally:

P = C = {0, 1}128

K = {0, 1}128, 192 or 256

E : K × P → C - AES encryption
D : K × C → P - AES decryption

3The number of internal rounds in AES depends on the key size: 10 rounds
for 128 bits, 12 for 192 bits, and 14 rounds for 256-bit keys. This can incur
additional performance cost.

25

Advanced Encryption Standard (AES)

AES encryption
plaintext (128)

AES decryption
ciphertext (128) plaintext (128)

Key generator

K (128, 192, or 256) K (128, 192, or 256)

26

Glance on Internals of AES

AES processes messages in multiple rounds (10, 12, or 14
depending on the selected key size)
Performs substitutions, permutations and mixes in the key
with messages in each round4

4Internals of AES are rather complex and outside of scope of this course.
27

Product Ciphers

Combine multiple rounds of simple transformations such as
substitution (S-box), permutation (P-box), and modular
arithmetic. Introduced by Claude Shannon (also the father of
information entropy) - Wikipedia.

AES is an example of a product cipher.

28

https://en.wikipedia.org/wiki/Product_cipher

Product Cipher System

Product cipher avalanche effect

29

Block Cipher Model - Keyed Family of Functions

Block cipher (e.g., AES) is a keyed function. More formally, let
us define a family of functions:

F : K × P → C.

For k ∈ K, Fk : P → C:

Fk is a permutation: ∀p ∈ P , F−1k (Fk(p)) = p.
Fk is easy to evaluate (both, Fk and F−1k).

30

Block Cipher Model - Keyed Family of Functions

P K0 K1 K2 K3 K4 K5 K6 K7
000 011 001 010 010 001 110 111 101
001 100 100 111 100 011 101 000 110
010 001 011 001 011 000 010 001 100
011 111 000 011 111 110 001 101 001
100 010 010 101 001 101 011 010 010
101 101 110 110 110 010 100 011 000
110 110 111 100 000 100 111 100 011
111 000 101 000 101 111 000 110 111

C K0 K1 K2 K3 K4 K5 K6 K7
000 111 011 111 110 010 111 001 101
001 010 000 010 100 000 011 010 011
010 100 100 000 000 101 010 100 100
011 000 010 011 010 001 100 101 110
100 001 001 110 001 110 101 110 010
101 101 111 100 111 100 001 011 000
110 110 101 101 101 011 000 111 001
111 011 110 001 011 111 110 000 111

En
cr
yp
tio
n
fu
nc
tio
ns

C
=
E(
K,
P)

=
F K
(P
)

De
cr
yp
tio
n
fu
nc
tio
ns

P
=
D(
K,
C)

=
F−

1
K

(C
)

31

Block Cipher Security

AES, as a block cipher, tries to mimic a random function.

Algorithm 2: Random Function Algorithm
Data: T = {}, associative array (dictionary)

Function Lookup(p ∈ {0, 1}ℓ):
Data: Plaintext p of size ℓ bits
Result: Ciphertext c of size ℓ bits

if T[p] == undefined then
select c randomly from {0, 1}ℓ;
set T[p] = c;

return T[p]

32

Block Cipher Security

AES tries to mimic a random function. How to formalize this?

Indistinguishability (analogy to Turing test of intelligence)
We consider two scenarios: one where computationally
bounded adversary A interacts with a real block cipher and
another where A interacts with an ideal block cipher
(represented by the random function algorithm). A can
requests the encryption of a finite number of plaintexts.

The real block cipher is deemed secure if A cannot
distinguish between interactions with the real and ideal
ciphers, except with negligible probability.

33

Block Cipher Security

Pseudo-Random Function/Permutation
A block cipher that satisfy indistinguishability definition is
said to be pseudo-random function or more precisly
pseudo-random permutation (as block cipher has to be a
permutation).

It is believed that AES behaves as a pseudo-radnom
permutation (but we do not have a proof).

34

AES as Pseudo-Random Function/Permutation

Some implications5:

AES output looks practically random.
Two plaintext messages that differ in only a single bit
result in highly different ciphertexts (avalanche property).
Decrypting a ciphertext that has not been encrypted
should result in a random looking plaintext.
Encrypting the same message using a different key results
(likely) in a different ciphertext.
Having multiple (plaintext, ciphertext) pairs
(pi, ci), i = 1, 2, . . . ,n, does not reveal the encryption key.

5Demo (CNS 2020/21)

35

Block Cipher Modes of Operation
(Encryption Modes)

Motivation

While modern ciphers like AES showcase resilience against
computationally-bounded adversaries, practical scenarios
prompt two crucial questions:

How to ensure secure encryption of the same message
more than one time?
How to securely encrypt a message exceeding the block
size of the used block cipher?

In the sequel, we will explore how to accomplish above using
fundamental block cipher modes of operation.

36

Basic Block Cipher Encryption Modes

Electronic Codebook (ECB)
Cipher Block Chaining (CBC)
Counter (CTR)

Not an exhaustive list.

37

Electronic Codebook (ECB) Mode - encryption

EK - block cipher using key K
P = P1P2 . . .Pn - plaintext splitted into blocks Pi
C = C1C2 . . . Cn - ciphertext

C1

EK

P1

C2

EK

P2

C3

EK

P3

…

Cn

EK

Pn

Ci = EK(Pi), i = 1, 2, . . . ,n
You should never encrypt your messages in this way

38

Electronic Codebook (ECB) Mode - decryption

DK - block cipher using key K (decryption direction)
P = P1P2 . . .Pn - plaintext splitted into blocks Pi
C = C1C2 . . . Cn - ciphertext

P1

DK

C1

P2

DK

C2

P3

DK

C3

…

Pn

DK

Cn

Pi = DK(Ci), i = 1, 2, . . . ,n
You should never use ECB mode to encrypt your messages

39

Electronic Codebook (ECB) Mode - warning

Original Image Encrypted in ECB mode

40

Chosen-Plaintext Attack (CPA) - Security

C1

RandFunc

P1

C2

RandFunc

P2

C3

RandFunc

P3

…

Cn

RandFunc

Pn

ECB mode is insecure even when using ideal block cipher.

Instead of relying on vague arguments or listing potential
attacks, let’s formalize security for encrypting messages larger
than the block size of the cipher or encrypting the same
message multiple times, as done previously with perfect
secrecy and ideal block cipher definitions.

Let’s play a game ...

41

Chosen-Plaintext Attack (CPA) - Security

Game 1: CPA-security game
Input: Encryption scheme Enc(K,M)
Output: Single bit 0 or 1

Adversary (A) selects messagesm0 ̸= m1 and ∥m0∥ = ∥m1∥;
Challenger selects a random bit b ∈ {0, 1};
Challenger selects a random key k;
if b = 0 then

Challenger encrypts m0 to obtain c← Enc(k,m0);
else

Challenger encrypts m1 to obtain c← Enc(k,m1);

Adversary (A) receives c;
Adversary (A) outputs b′ ∈ {0, 1};

return 1 if b = b′, 0 otherwise

42

Chosen-Plaintext Attack (CPA) - Security

CPA-Security
An encryption system Enc(K,M) is considered CPA-secure if
and only if the advantage Adv of the adversary A in
distinguishing which message was encrypted in the previous
game is negligibly small. More formally, for security
parameter n (e.g., the key size):

AdvCPA(A) =

∣∣∣∣Pr[Game→ 1]− 1
2

∣∣∣∣ = ∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣ ≤ O(2−n).

Note: This definition is provided for completeness but isn’t
required knowledge for the exam.

43

Electronic Codebook (ECB) Mode - Security

Theorem
ECB encryption mode is not CPA-secure.

Consider AES block cipher used in ECB encryption mode. Convince yourself
that adversary A can win against this encryption system, in the previous
game, by selecting messages m0 and m1 as follows:

m0 = 00 . . . 0︸ ︷︷ ︸
128

00 . . . 0︸ ︷︷ ︸
128

and m1 = 00 . . . 0︸ ︷︷ ︸
128

11 . . . 1︸ ︷︷ ︸
128

.

ECB is an example of a deterministic encryption system6. In
the following slides, we show two randomized encryption
modes that (properly used) are CPA-secure.

6Many DB systems support deterministic encryption for efficient searching.

44

https://www.mongodb.com/docs/v5.0/core/security-client-side-encryption/

Cipher-Block Chaining (CBC) - encryption

EK - block cipher using key K
IV - initialization vector
P = P1P2 . . .Pn - plaintext splitted into blocks Pi
C = C1C2 . . . Cn - ciphertext

C1

EK

P1

C2

EK

P2

C3

EK

P3

…

Cn

EK

Pn

Cn−1

IV

C1 = EK(IV⊕ P1) and Ci = EK(Ci−1 ⊕ Pi), i = 2, . . . ,n
In this mode, plaintext P must be padded (dangerous).

45

Cipher-Block Chaining (CBC) - decryption

DK - block cipher using key K (decryption direction)
IV - initialization vector
P = P1P2 . . .Pn - plaintext splitted into blocks Pi
C = C1C2 . . . Cn - ciphertext

P1

DK

C1

P2

DK

C2

P3

DK

C3

…

Pn

DK

CnCn−1

IV

P1 = IV⊕ DK(C1) and Pi = Ci−1 ⊕ DK(Ci), i = 2, . . . ,n

46

Cipher-Block Chaining (CBC) - error propagation

Example
Example Assume that the ciphertext C2 is modified/changed
into Ĉ2. How does this affect decrypted plaintext blocks?

P1

DK

C1

P̂2

DK

Ĉ2

P̂3

DK

C3

P4

DK

C4

P5

DK

C5

IV

Note that in CBC mode an adversary can cause controlled
changes in plaintext blocks. Example: convince yourself that
Ĉ2 = C2 ⊕ 100 . . . 0 results in P̂3 = P3 ⊕ 100 . . . 0.

47

Cipher-Block Chaining (CBC) Mode

Original Image Encrypted in CBC mode

48

Cipher-Block Chaining (CBC) Mode

Theorem
CBC encryption mode (used properly) is CPA-secure.

Remember: Initialization vector (IV) must be selected randomly
for each new message.

Example usage: your WhatsApp messages are encrypted using
CBC mode.

49

Counter (CTR) Mode - encryption

C1

P1

EK

ctr

C2

P2

EK

ctr+ 1

C3

P3

EK

ctr+ 2

…

Cn

Pn

EK

ctr+ n− 1

Ci+1 = EK(ctr+ i)⊕ Pi+1, i = 0, 1, . . . ,n− 1
Ki+1 = EK(ctr+ i), i = 0, 1, . . . ,n− 1 is called keystream
ctr must not be repeated under the same key K
CTR mode is a stream cipher built upon a block cipher
Very efficient, easy to parallelize
Can encrypt messages as short as 1 bit
No need for padding overhead (i.e., ∥P∥ = ∥C∥)

50

Counter (CTR) Mode - decryption

P1

C1

EK

ctr

P2

C2

EK

ctr+ 1

P3

C3

EK

ctr+ 2

…

Pn

Cn

EK

ctr+ n− 1

Pi+1 = EK(ctr+ i)⊕ Ci+1, i = 0, 1, . . . ,n− 1

51

Counter (CTR) Mode

Original Image Encrypted in CTR mode

52

Counter (CTR) Mode

Theorem
CTR encryption mode (used properly) is CPA-secure.

Remember: One should never encrypt the same counter value
under the same encryption key.

Example usage:

Most HTTPS secured web communication is protected using AES cipher
in Galois/Counter Mode (AES-GCM).
WiFi also uses AES in CTR mode to protect your communication with an
access point: Counter Mode CBC-MAC Protocol (in WPA-2, WPA-3) and
AES-GCM (in WPA-3).

53

	Symmetric Cryptography
	Classical Encryption Systems
	Modern Encryption Systems
	Block Cipher Modes of Operation (Encryption Modes)

